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A method for studying the vibrational energy flows through structures based on
receptance theory is presented. The structures are considered to be made up of subsystems,
which may, in turn, be substructures modelled by using finite element analysis (FEA), each
having been separately analyzed for its eigenvalues and eigenvectors. The method may be
classified as a form of substructuring using free–free interface conditions. It differs
significantly from traditional substructuring in its use of matrices composed of the
substructure Green functions, evaluated as summations over their uncoupled modes, to
obtain the displacement contributions of the external and boundary coupling forces; also,
the method can readily take into account variations in substructure damping. The proposed
method additionally calculates the time averaged substructure vibrational energy levels by
evaluating the balance between input and dissipated energies and the energy transfers
through coupling nodes. It is therefore of particular interest when using FEA substructures
to carry out statistical energy analysis (SEA) studies, since the resulting energy data can
be readily applied to evaluate SEA parameters such as coupling loss factors.

The formulation developed has been implemented as a computer program which uses
substructure modal information from a commercial FEA package and then combines this
to predict the response of the global model. Two simple examples involving two- and
three-dimensional FEA models built from beam elements are presented, which show that
there is good agreement between the substructure based predictions and the equivalent
global models. Moreover, the method presented is computationally more efficient than
using global FEA models, even when all the substructure modes are used. The method is
then applied to study the SEA coupling loss factors of two further example structures: first,
two thin plates joined along an edge at right angles are examined; and then a second, more
complicated structure formed from a section of a large marine vessel is studied. The
approach is shown to be applicable to any general finite element model which is considered
as an SEA subsystem. 7 1997 Academic Press Limited.

1. INTRODUCTION

A formulation for predicting the energy levels of a general structure, based on the modal
properties of uncoupled substructures, is presented. Such subsystem-wise predictions of
energy levels for complex structures are of interest in acoustics and related fields, especially
Statistical Energy Analysis (SEA) [1]. In SEA, estimation of the so called ‘‘coupling loss
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factors’’ applying between various substructures (or subsystems in SEA terminology) is
crucial to the prediction of high frequency vibrational energy levels. The data usually
required to evaluate these factors, either by experimental or numerical means, are the
powers input to the subsystems and the resulting, time averaged, energy levels. These are
also commonly averaged spatially over a number of forcing and response points and/or
across a range of frequencies. The substructure method proposed here is primarily intended
to provide such data from FEA models and also, in a reverse sense to check the reliability
of SEA predictions for given structures. A fundamental feature of the approach (and other
substructuring methods) is the desire for much higher frequencies to be made accessible
from FEA models than would be achieved if global FEA models of the combined
subsystems were used instead.

A formulation for predicting the energy flows through rigidly coupled beam networks
by using receptance theory has been recently presented by the authors [2]. In that study,
the behaviour of a global structure of beams was predicted from the Green functions of
the uncoupled elements: i.e., matrices of Green functions were used to derive expressions
for the beam-end displacements in the form of the contributions of the external driving
and unknown boundary coupling forces. Enforcement of suitable boundary conditions at
the beam-ends was used in the formation of a number of complex simultaneous linear
equations with the boundary coupling forces as the unknowns; once these are solved, it
is possible to find the energy flows through the various substructures. In the present work
this formulation has been extended to discrete models. The main differences between the
two approaches are: (a) the use of FEA derived mode shapes instead of analytical ones
(note that the numerically derived FEA mode shapes used constitute a finite set of
orthogonal modes, as against the analytically derived, infinite set of orthogonal modes used
in the previous work—this has implications for the convergence of the Green function
modal summations); (b) the present formulation has to consider substructure coupling at
an arbitrary number of joints per substructure and hence it is set up to deal with many
cross receptances; and (c) the need to use any general substructure makes is necessary to
assume modal coupling between x, y and z displacements and rotations at any point.

Receptance theory provides a method for predicting the behaviour of a composite
system based on a proper combination of the component receptances [3]. One of the
advantages of the receptance approach is its ability to calculate directly substructure energy
transfers, since it deals in both the junction forces and displacements; it can also allow for
substructure specific damping. This is not to say that approaches such as the dynamic
stiffness method (or indeed other substructuring approaches) cannot yield interface forces;
rather, that the receptance method is perhaps the most natural approach to adopt when
interface forces are required. Receptance methods have therefore often been applied to
SEA, which deals with the energy flows in systems of coupled substructures (subsystems
in SEA terminology) under conditions such as random external forcing, weak coupling
strengths and high modal density. Such work has often been focused on the validity of
the assumptions underlying SEA by the deterministic study of energy flows through simple
systems of coupled beams or rods; see, for example, the papers of Davies [4], Remington
and Manning [5], Clarkson [6] and Keane and Price [7]. The approach can, however, be
somewhat less computationally efficient than some of the alternatives when dealing with
problems with large numbers of coupling points. Here it is applied to SEA studies in which
FEA has been used to analyze individual subsystems. Such analyses usually involve
relatively few interface points and so such inefficiencies are rarely a significant problem,
especially given the direct availability of the coupling forces which are needed in SEA.
Moreover, as is demonstrated later, the approach is still significantly faster than global
FEA, in which all of the modes of a structure must be dealt with.
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Finally, it should be noted that FEA models have recently been used by a number of
other workers to evaluate SEA coupling loss factors or study the validity of the many
assumptions inherent in SEA; for example, by Nefske and Sung [8], Wood [9], Hambric
[10], Steel and Craik [11], Simmons [12] and Fredo [13]. The formulation proposed in this
paper is aimed at reducing some of the shortcomings found by these various workers, by
increasing the range of frequencies considered while producing exact energy balances and
enabling the use of damping levels which differ from subsystem to subsystem.

2. FORMULATION

As has already been noted, the authors have recently presented a receptance based
approach for studying the behaviour of coupled, two-dimensional substructures [2]. The
extension of this work to deal with arbitrary numbers of coupling points per
(three-dimensional) substructure and the finite sets of modes resulting from FEA, as
opposed to classical calculations, is relatively straightforward. In this case, the external
forcing vector on a substructure (A), due to loading at point I
 e, {F(A)}I
 e, is constituted by
six component forces corresponding to the local x, y, z, ux , uy and uz co-ordinates: i.e., FI
 e

(A).x ,
FI
 e

(A).y , FI
 e
(A).z , FI
 e

(A).u.x , FI
 e
(A).u.y and FI
 e

(A).u.z . The coupling force vectors at the I, J, K, . . . coupling
points of each substructure, such as {F(A)}I, {F(A)}J, {F(A)}K . . . , are likewise each constituted
by six component forces, represented in similar notation.

The expression for a six-dimensional local displacement vector, such as {x(A)}I, may then
be represented by

s
Z


N
 = I


[G(A)]IN
 e{F(A)}N
 e + s
Z

N= I

[G(A)]IN{F(A)}N = {x(A)}I, (1)

where all the matrices of Green functions for the substructure (A), [G(A)], are of order 6×6,
e.g.,
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= [[G(A)]JI ]T. (2)

The Green functions take the traditional form of sums over modes, but are now calculated
from the finite orthogonal sets of modes generated by the FEA solutions for the individual
substructures, with the interface between the substructures set free. For example, the x
component response at I due to y component forcing at J is

G(I.x, J.y)= s
n

r=0

fI
r.xf

J
r.y

MrDr
, (3)
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where fI
r.x is the xth component of the rth mode shape at point I, Dr =v2

r −v2 + icv,
vr is the rth natural frequency and c, the ratio of damping coefficient to mass of the
substructure, such that the damping ratio, z, is given by c=2zvr . Here the n modes of
the substructure are normalized to have unit modal masses, i.e.,

[F� ]T[M][F� ]= [I], (4)

where the normalized modal matrix [F� ] is obtained by dividing the rth column of [F] by
the square root of the modal mass Mr . Such a scheme can be helpful for assigning modal
damping, since the separate modal masses then need not be taken into account, making
it easier to assign damping parameters relative to other substructures: this is particularly
useful for assigning constant coefficient damping. Adoption of the mass normalized mode
shapes [F� ] simplifies the equation for the Green function summation to

G(I.x, J.y)= s
n

r=0

f� I
r.xf� J

r.y

Dr
. (5)

For free–free substructures, six rigid body modes have to be included in these modal
summations, consisting of three purely translatory modes and three purely rotary modes,
or six linear combinations involving them. These are evaluated in most FEA packages
along with the flexible modes and can be readily included in the summations, with the
corresponding natural frequencies set to zero.

The scheme for the assembly of equations, solution of the joint coupling forces and
power calculations, once they have been transformed into a consistent global co-ordinate
scheme, is relatively straightforward and as per the previous reference [2]. Since the
coupling force vectors are constituted by six components here, the order of the complex
matrix solution becomes six times the total number of coupling points on all the
substructures. It should also be recalled that, when using FEA models in SEA, it is often
necessary to average results over a number of different forcing points. The responses to
multiple forcing at different points on a substructure are obtained here by summing up
the external forcing contribution matrices on the right sides of the equations. Therefore,
when the responses due to separate forcing at different points are required, the final form
of the assembled matrix equations allows schemes such as Crout factorization to be
applied, which permit multiple right sides to be solved with little extra computational effort
once the decomposition and triangularisation of the left side has been carried out. This
allows the almost simultaneous evaluation of subsystem energies for the different cases of
external forcing being considered.

To carry out the substructuring process the separate subsystems are solved for their
eigenvalues and vectors, which are then used by the receptance formulation to predict the
displacements and forces at the coupling joints. These then allow the direct calculation of
the various energy flows through the couplings and hence the energy dissipations within
each substructure. The various energy levels are then obtained from these dissipated
powers using the damping coefficients. To check the validity of the calculations the
displacements may be compared against those from a global FEA model, obtained by
merging the subsystems without any alteration of the mesh properties. Also, the power
input to the system can be verified to be equal to the sum of the dissipated powers of all
the substructures.

Here, all the finite element calculations have been performed by using the IDEAS-VI
package [14], which has both similarity transformation and iterative eigenvalue solvers.
The former reduces the system matrix to diagonal form through matrix rotations and can
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be used to extract the complete set of modes for small models. The Householder-QL and
Jacobi methods are of this type, the former being faster as it performs all the operations
in core (which also restricts the size of the model), whereas the latter writes the intermediate
data to disk, making it suitable for the solution of larger models. The iterative method,
which uses the Simultaneous Vector Iteration (SVI) algorithm, is suitable for very large
models, although only a limited number of modes can be extracted at one time.

In some of the examples given below, the CPU times taken for the extraction of global
modes are compared with those when using the receptance approach over the entire set
of substructure eigenvalues. It may be noted that it is often not feasible to extract the entire
set of substructure eigenvalues for large models, and if such a need occurs then other direct
methods of dynamic matrix inversion must be used. However, the intention here is to
demonstrate that even if only a proportion of the substructure modes are used, the
advantages over using a few global modes are still appreciable; in this case the numerical
accuracy of the energy balance must be checked to ensure that errors due to modal
truncation are acceptable. It should also be recalled that some other substructuring
approaches, such as the dynamic stiffness method, would probably be as fast or faster in
solving for displacements as the method proposed here. Such methods are, however, not
yet widely available; the general purpose FEA code used here, for example, does not
include such approaches [14].

The time required for processing the substructure data when using the receptance
formulation depends on the number of driving frequencies at which the energy levels or
displacements are to be evaluated, each requiring the evaluation of the Green functions
and the solution of a set of complex equations, the order of which is dependent on the
number of coupling points. It may be noted that the matrix size is independent of the
number of substructure modes used in the summation, which makes it feasible to include
all the substructure modes in the calculation if they are available. The evaluation of the
Green functions is made easier by the use of (a) stored FEA derived mode shapes and
frequencies and (b) the matrix transpose relations between the coupling points, such as
[G(A)]MN =[[G(A)]NM]T. The computational effort involved in the assembly and solution of
these equations is more than offset, for large structures, by the fact that the modes used
are obtained by solving subsystems of reduced size. It also allows the various energy flows
to be calculated directly with negligible further effort.

3. INITIAL EXAMPLES

After having outlined the approach to be adopted, and before going on to perform SEA
calculations, two simple beam based examples are presented next to illustrate the
substructuring process. The structures analyzed are illustrated in Figures 1 and 2. They
have both been modelled with the IDEAS-VI finite element package by using linear beam
elements and subjected to unit point harmonic forcing of the type F=Re {1 eivt}. The
beams were taken to have the following properties: second moments of area,
Iyy = Izz =1×10−7 m4, cross-sectional area, Axx =3·49×10−4 m2, modulus of elasticity,
E=2×1011 N m−2, density, r=7851 kg m−3 and Poisson ratio, n=0·3.

3.1.  1
The first example consists of two plane substructures, being discretized with 246 and

252 d.o.f., respectively, the latter having, in addition, three rigid body modes. The
combined FEA model, obtaining by merging nodes at the coupling joints J1 and J2, has
492 d.o.f., which yield 492 flexible modes. The undamped substructure modes, after
extraction, were normalized for unit modal masses. The ratio of damping coefficient to
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Figure 1. Example 1, a two-dimensional, two-substructure model.

mass for both substructures was set to 100·0 in the receptance formulation. The undamped
global modes were similarly normalized and all modes assigned a damping coefficient of
100·0, which correctly simulates the substructure damping. The complete set of modes were
extracted in double precision for the two substructures and for the global model. The
solution time requirements were as shown in Table 1.

The additional time required to combine the two substructures, when using the
receptance formulation, was 250 CPU seconds for the 500 frequencies considered within
the frequency domain of 0–5000 Hz each frequency step requiring the assembly and
solution of a complex 12×12 matrix. Even after taking into account such overheads, the
saving in time due to the substructure approach proposed is quite significant. The X, Y
and U displacements at J2, obtained from the receptance formulation and the FEA global

Figure 2. Example 2, a three-dimensional, three-substructure model.



   497

T 1

Time required for solution (CPU seconds), Example 1

Solution method Substructure 1 Substructure 2 Global model

Householder-QL 73 78 Not solved
Jacobian 225 240 2880

models are compared in Figure 3; the curves are essentially superimposed, showing that
the two methods produce identical results. Although only the range 0–5000 Hz is shown
in the figure, it is found that inclusion of the entire set of substructure modes gives accurate
results throughout the eigenvalue frequency range.

The inclusion of sufficient substructure modes being important to the accuracy of the
receptance based prediction, in Figures 4 and 5 are shown the effects of taking into account
25%, 50%, 75%, 90% and 100% of these substructure modes when calculating the energy
levels of substructures 1 and 2. The severity of the influence of substructure modal
truncation clearly varies with frequency, and only a detailed study of the modal
participation factors at the driving and response points can give insight into the modal
contributions for any particular driving and response configuration. Frequency band
averaging is one method that can be used to minimize the effect of such errors; its efficacy,
however, depends on the modal density and overlap factors of the system. In Figures 6(a)
and (b) are shown the effect of frequency averaging, with bandwidths of 100 Hz and
200 Hz for the energy levels of substructure 1 (cf., Figure 4). The percentage variations
from the exact case are shown and it is clear that the errors arising when using a 200 Hz

Figure 3. Example 1: displacements at J2 calculated via substructure and global FEA models (results almost
superimposed). ———, X displacement, substructure calculation; - - - - -, Y displacement, substructure
calculation; –····–····–, U displacement, substructure calculation; – – –, X displacement, global FEA calculation;
–···–···–, Y displacement, global FEA calculation;
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Figure 4. Example 1: variations in substructure 1 energy levels for variations in the number of substructure
modes. ———, 25% of modes; - - - - -, 50% of modes; –·–·–·–·–, 90% of modes; – – –, all modes.

bandwidth are much less than for a 100 Hz bandwidth, as might be expected, although
more detail is lost from the results.

It is also worth examining the behaviour of the Green functions with respect to the
number of modes in the summation being used. In an analytical model, where there are

Figure 5. Example 1: variations in substructure 2 energy levels for variations in the number of substructure
modes (key as Figure 4).
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Figure 6. Example 1: variations in the frequency band averaged substructure 1 energy levels for variations
in the number of substructure modes, (a) by using a bandwidth of 100 Hz and (b) by using a bandwidth of 200 Hz
(key as Figure 4).

an infinite number of orthogonal modes, the inability to include all of the modes leads to
problems regarding the convergence of the functions. In discrete FEA models, however,
the Green function summation can include the complete finite set of orthogonal modes,
giving responses which are exact relative to that model. If the model is coarsely discretized,
however, the inclusion of each additional mode in the summation causes a jump in its
value, leading to a ‘‘staircase’’ variation in the function. In Figure 7 is shown the Green
function of the rotary modes at 1000 Hz for J2 of substructure 1. The effect of the rather
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Figure 7. Example 1: convergence of the rotary Green Function at 1000 Hz for substructure 1. ———, Real
part; – – – –, imaginary part.

coarse modes involved is clear, although the final summation value (using all 246 modes)
is exact relative to the global model.

3.2.  2
Next, a three-dimensional model consisting of three substructures is studied; again see

Figure 2. Here substructure 1 has 270 d.o.f. and is fully fixed at its base points, whereas
substructures 2 and 3 have 294 d.o.f. and are free–free, each possessing six rigid body
modes in addition to the set of flexible modes. The global structure, obtained by merging
the coupling point nodes, has 810 d.o.f. In this example the complete set of eigenvectors
for the substructures were readily extracted in double precision. The matrix size of the
global model necessitated the use of the iterative solver, and only a limited number of
modes were extracted in single precision due to the significant computational effort
involved. The solution time requirements were as shown in Table 2.

Since the frequencies of the global model are truncated at the 250th mode, which
corresponds to 1770 Hz, a limited frequency domain of 0–2000 Hz is considered for the
substructure combination. The time taken to combine the substructure, using the
receptance formulation, was 1500 s for the 200 frequencies considered, each frequency step
requiring the assembly and solution of a 96×96 complex matrix. While this example again

T 2

Time required for solution (CPU seconds), Example 2

Solution method Substructure 1 Substructure 2 Substructure 3 Global model

Householder-QL 200 263 263 Not solved
Jacobian 405 471 471 Not solved
Iterative — — — 3100 (12 iterations, 250 modes)
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Figure 8. Example 2: translatory displacements at J6 calculated via substructure and global FEA models.
———, X displacement, substructure calculation; - - - - -, Y displacement, substructure calculation; –····–····–, Z
displacement, substructure calculation; – – –, X displacement, global FEA calculation; –···–···–, Y displacement,
global FEA calculation; .........., Z displacement, global FEA calculation.

shows that there is appreciable saving in time by adopting the receptance formulation, it
may be also noted that the method gives accurate results throughout the frequency domain
of the combined model, which cannot be obtained by the solution of the equivalent global
model unless all its modes are extracted.

The six displacement components of the model at J6, obtained by the receptance
formulation and the global FEA model are compared in Figures 8 (X, Y) and 9 (UX , UY

and UZ ). The curves are in good agreement, especially in the low frequency ranges where
they are superimposed on each other; the deterioration of the FEA results near 1770 Hz
followed by the abrupt truncation in the responses are clearly shown. Lastly, in Figure 10
are shown the input and dissipated powers in the three substructures due to driving
substructure 1, a much larger frequency domain being considered in this case. It is shown
in the figure how, over certain portions of the frequency range, the dissipated power of
the driven system nearly equals the input power because of the very small losses occurring
in the undriven systems for this example.

4. FEA AND SEA

Attention is next focused on how the substructuring approach presented here can be
used in energy flow studies of complex structures, and in particular how these may be
related to SEA. It will be recalled that SEA is concerned with formulating simple, linear
equations that predict the flow of vibrational energy around structures using quantities
known as coupling loss factors (CLFs) [1]. Once the CLFs are known, the use of SEA is
quite straightforward, although it is far from obvious how accurate a particular SEA
model will be in practice, unless a number of rather restrictive assumptions hold [15]. It
should be noted at the outset that FEA is an essentially deterministic tool, while SEA is
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concerned with average results. Thus, to apply the results of FEA to traditional SEA, some
kind of averaging is required. Formally, SEA is concerned with averages over ensembles
of similar but not identical systems carried out frequency by frequency. It is, however,
commonly applied to averages over frequency on a single system. Either approach can be
adopted when using FEA results, although it is usually more convenient to average over
frequency for results from a single FEA run, and that is the approach used here. It should
be noted, however, that useful results can also be obtained without averaging the FEA
results at all, and this approach is also used in the present work. In such circumstances
the quantities produced by the approach are then not strictly coupling loss factors at all
but, rather, energy flow coefficients; here the term ‘‘coupling loss factor’’ is used
throughout to avoid confusion. Lastly, it should be mentioned that it is common practice
in SEA to average results over a range of forcing and response points when deducing
CLFs, especially when dealing with problems involving radiated noise: this approach is
also used here.

The basic approach to using FEA with SEA is to treat the FEA model as a test-bench
on which SEA experiments can be conducted, much as they would be for real experiments.
Thus power is injected into various parts of the FEA model and the response calculated:
these are then used to deduce the parameter values of the SEA model. The data obtained
from applying the resulting model for other forcing cases can then be used to check its
range of validity. The attraction of using FEA in this way, rather than the semi-infinite
subsystem wave analysis of classical SEA, is its ability to work with complex subsystems
at low frequencies. Moreover, existing experience of using FEA models for this purpose
suggests that only approximate mode shapes are required when predicting frequency
averaged energy levels, albeit subject to certain restrictions; this may significantly reduce

Figure 9. Example 2: rotary displacements at J6 calculated via substructure and global FEA models. ———,
UX displacement, substructure calculation; - - - - -, UY displacement, substructure calculation; –····–····–,
UZ displacement, substructure calculation; – – –, UX displacement, global FEA calculation; –···–···–, UY

displacement, global FEA calculation; .........., UZ displacement, global FEA calculation.
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Figure 10. Example 2: input and dissipated powers. ———, input power;.........., substructure 1 dissipated
power; - - - - -, substructure 2 dissipated power;– – –, substructure 3 dissipated power.

the computational burden associated with finite element models (which is a prime source
of criticism of the approach) and thus extend its useful frequency range to higher limits.

The literature describing the existing methods of using FEA models for energy flow
studies, cited in the introduction, suggests certain improvements which could enhance its
effectiveness for SEA work. Those addressed here are as follows. (a) The present tendency
is to use global FEA models of the combined subsystems, which leads to significantly
greater computational burdens and lower frequency ranges. (b) Using global modes makes
it difficult to apply separate internal damping levels to the various subsystems (most FEA
packages currently allow only damping of the global modes, with a common damping
factor for the combined subsystems). (c) The normal procedure for finding subsystem
energy levels is to square the nodal velocities in each subsystem and multiply them by the
values of the lumped masses at each node. This method is not only approximate, due to
its adoption of lumped, rather than consistent masses, but also tedious since it necessitates
careful assignment of the node numbers so as to be able to decide which subsystem each
node belongs to. While this may be accomplished in smaller models, it is difficult to
implement in complex structures without a great deal of human interaction. (d) The
procedure for finding energies averaged over a range of forcing points is also tedious, since
the energy levels due to excitation at different locations have to be separately evaluated
and then averaged. As has already been noted, the receptance based subsystem formulation
adopted here overcomes most of these shortcomings. However, care must be taken in using
the results of such studies: here the aim is not to deduce coupling loss factors per se. Rather,
the idea is to illustrate some of the likely difficulties that would be encountered in using
SEA on models of the type analyzed. For instance, the examples studied highlight the
effects of so called ‘‘indirect’’ CLFs which allow for energy exchanges between subsystems
not directly coupled to each other and which lie outside the framework of classical SEA.
Additionally, some of the CLFs found become negative at times, which is not possible in
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the normal use of SEA; here it shows where a traditional use of SEA would be liable to
give difficulties.

5. SEA CALCULATIONS

To illustrate the receptance based approach proposed, two further examples are studied
from the viewpoint of SEA coupling loss factors (CLFs). The first is a structure consisting
of two thin plates connected at right angles along a common edge which is constrained
to have purely rotary motion (see Figure 11). This model was studied by Dimitriadis and
Pierce [16] who showed that the energy flows at high modal overlap factors and high
frequencies approach SEA predictions based on semi-infinite plates. The plate dimensions
and materials used here are the same as in the reference. The last example is a much more
complex structure, being a section taken from a Small Waterplane Area Twin Hulled
(SWATH) ship, a large marine vessel (see Figure 12). It has a central superstructure and
two submerged hulls, placed symmetrially on either side of it. This section is divided into
three subsystems, along obvious partition lines, and its direct and indirect CLFs studied
using the receptance formulation. Both examples were again modelled using the
I-DEAS-VI FEA package [14], with results being averaged across a range of forcing and
response points. For these examples the modal solutions were obtained using the SVI
solver in the package.

5.1.  3
The two plates in this example were taken to have the following dimensions and

properties: vertical plate (plate 1), 0·5334 m×0·4572 m, horizontal plate (plate 2),
0·3819 m×0·4572 m, thickness, t=0·001587 m; modulus of elasticity,
E=6·95×1010 N m−2; density, r=2790 kg m−3; and Poisson ratio, n=0·33. The wave
speed of such plates is given by cL =[E/r(1− n2)]1/2 [16], which gives a value of 5287 m−1 s
in this case. The finite element model used here for the plate 1 had 340 quadrilateral thin
shell elements and that of plate 2, 238 elements, all having an approximately unit aspect
ratio. The resulting element dimensions are typically 0·025 m square, and this satisfies the
condition of being less than a third of the bending wavelength, even at high frequencies.

For plate 1, 280 mode shapes (including one rigid body mode) were extracted, spanning
the frequency range up to 7500 Hz; for the smaller plate, with rather lower modal density,
190 modes were extracted, spanning the same range. The eigenvalues were extracted to an
accuracy of four digits and this took approximately 30 minutes CPU time for each plate.
The model had 18 interface nodes along the common edge, each having only a single rotary
degree of freedom; hence the order of the assembled complex receptance matrix to be
solved at each frequency was 36×36. Frequencies of up to 4000 Hz were studied for
CLFs, although values up to 5500 Hz yielded consistent energy balances: i.e., the input
powers matched the sum of the subsystem dissipated powers. Beyond that the values were
not reliable for use in the CLF equations. All the subsystem modes were mass normalized
to unity and then given damping coefficients. An equivalent global model of the two plates
was created by merging the interface nodes to measure the time taken to solve for the
global modes; the extraction of 60 eigenvalues, to three-digit accuracy, exceeded two and
a half hours CPU time and these frequencies spanned less than 1000 Hz in this case. This
significantly increased solution time clearly demonstrates the advantage of using a
substructure approach to extend the upper limit of the frequency ranges being studied.

In Figure 13 is illustrated the SEA model used in this example, showing the CLFs, for
the two plates, here referred to as subsystems 1 and 2. To calculate the CLFs the power
injection method is used: in this method, power is first injected into subsystem 1, keeping
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Figure 11. Example 3: two plates coupled along a common, simply supported edge.

Figure 12. Example 4: FEA meashes of the SWATH ship. (a) Whole ship; (b) aft section broken into
subsystems.
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Figure 13. The subsystem model for the two plates of Example 3 showing SEA parameters.

subsystem 2 undriven (case A) and then subsystem 2 is forced with subsystem 1 undriven
(case B). Starting with case A, 20 nodes were selected at random on subsystem 1, with a
uniform spatial distribution, and each externally forced to find the time averaged energy
levels (which may be calculated simultaneously, as noted earlier). These were then averaged
together to give the mean input power to subsystem 1 (P1A ) and the mean energies of
subsystems 1 and 2 (E1A and E2A ). Likewise, for case B, subsystem 2 alone was forced and
P2B , E1B and E2B obtained in similar fashion. The following set of equations are then used
to calculate the CLFs, h12 and h21. Note that, the internal damping ratios h1 and h2 are given,
but in these equations they are treated as unknowns and their recalculated values then serve
as a check on the accuracy of the derived CLFs:

P1A /v= h1E1A + h12E1A − h21E2A , 0= h2E2A − h12E1A + h21E2A , (6, 7)

P2B /v= h2E2B − h12E1B + h21E2B , 0= h1E1B + h12E1B − h21E2B . (8, 9)

After having obtained the CLFs from these equations, the effects of variation in modal
overlap factor (MOF) on the apparent modal density ratio may be examined. According
to traditional SEA theory this ratio should be given by h12/h21, and if this lies far from
the actual modal density it indicates that the basic SEA assumptions are no longer valid.
Here the asymptotic value of the ratio should be 0·716, i.e., the ratio of the plate areas;

Figure 14. The influence of modal overlap factors on the apparent modal density ratio for example 3. ··········,
MOF=0·06; - - - - -, MOF=1·0; ———, MOF=6·0.
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Figure 15. The influence of modal overlap factors on the coupling loss factors for example 3: (a) MOF=0·06;
(b) MOF=1·0; (c) MOF=6·0. Gaps in the curves indicate negative values, and + signs indicate discrete positive
values. ———, h21; - - - - -, h12.

the results obtained from the FEA models in 500 Hz bands varied from 0·67 to 0·8, the
average being 0·73.

It will be recalled that the MOF is the number of modes per Hz× hv/2p and is therefore
directly proportional to damping. Since there are about 0·03 and 0·04 modes per Hz for
the two plates used, a damping coefficient (c= hv) of 200 s−1 gives approximately unit
MOF in this case. The apparent modal density ratios and CLFs have therefore been
calculated for three levels of damping leading to MOFs of approximately 0·06, 1·0 and
6·0 in both plates. In Figure 14 are shown the apparent modal density ratios, and their
improvement at higher MOFs is apparent: the variations about the mean become less and
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less. In this figure, the frequency averaged ratios calculated between 3000 and 4000 Hz
(where the asymptotic value should apply) are 0·8, 0·7 and 0·73 for the three MOFs,
respectively. It is thus clear that the mean value predicted for low MOF is rather greater
than for plates with MOFs greater than unity, which are closer to the asymptotic value.
In Figure 15 are shown the CLFs for these increasing values of MOF. It may be seen that
at low MOFs and certain discrete frequencies, both of the CLFs are negative, such
behaviour being also observed in reference [13], where it is suggested that this is due to
non-reverberant energy transfer. Conversely, the CLFs are quite smooth at a MOF of 6·0.
Note that the values of damping coefficients recovered from the CLF equations were
always equal to the given values in these cases, since equations (6)–(9) can correctly model
the energy flows at all MOFs and frequency ranges for this example, provided that negative
CLFs are permitted. This is as expected, given that only two subsystems are involved and
there are therefore no indirect CLFs to be dealt with.

5.2.  4
The final example to be studied is a section taken from a ship (again see Figure 12).

The complete model of the SWATH used to provide this section has approximately 34 000
degrees of freedom and 4700 elements [17]. The bulk of the elements in the model are of
the quadrilateral plate, triangular plate and quadrilateral curved shell type. Lumped mass
elements are used to model large masses of equipment. Beam elements are used either for
non-structural items such as masts or stacks, or as plate stiffeners. The basic structure is
stiffened by a large number of transverse bulkheads which connect the superstructure to
the two hulls. Since the complete model of the ship was difficult to solve with the available
computing facilities, due to its large size, the section taken from the aft portion was
considered for study.

Here the two hulls are referred to as subsystems 1 and 3, and the superstructure as
subsystems 2, as per Figure 16. This choice of subsystems is based on the rather obvious
geometrical divisions in the structure; other breakdowns could, of course, be adopted and
these might yield improved SEA models—such choices are often difficult to make in SEA
work. In this case subsystems 1 and 3 each have 312 elements and 641 nodes. They are
not completely identical, however, due to variations in the lumped mass models. Subsystem
2 has 591 elements and 1107 nodes and is not quite symmetrical.

For subsystems 1 and 3, 180 eigenvalues were extracted with four-digit accuracy in
approximately four hours. These included six rigid body modes and spanned 80 Hz. For

Figure 16. The subsystem model for the stern section of the SWATH ship of Example 4, showing SEA
parameters.
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Figure 17. Variation of number of modes per 10 Hz frequency band with frequency for Example 4: (a)
subsystem 1; (b) subsystem 2; (c) subsystem 3.

the much larger subsystem 2, the extraction of 266 eigenvalues with the same accuracy,
but spanning just 50 Hz required around 18 hours. Given this upper limit for the second
subsystem, only frequencies up to 40 Hz were studied when obtaining the CLFs. A global
model of the aft section, combining subsystems 1, 2 and 3 and containing 2323 nodes, was
also solved. Only 156 eigenvalues (spanning 7 Hz with three-digit accuracy) could be
extracted for this model due to its large size, which even so took over 22 hours to deal
with.

To carry out the receptance approach in this case, each frequency step in the solution
required the assembly and solution of a 696×696 complex matrix, as 33 nodes (some
having six and others five degrees of freedom) occur at each interface, this required about
10 minutes of CPU time per frequency. The CLFs to be studied in this example are also
illustrated in Figure 16; they are calculated in the same manner as in the previous example;
see equations (6)–(9). However, in this case, as there are three subsystems, it is possible
to obtain nine equations for the cases corresponding to forcing subsystems 1, 2 and 3 alone
in turn.

For this example, each subsystem was driven by harmonic forces applied at 25 randomly
selected points. Averaging over 25 points was found to give marginally better results than
attempts with 20 points and reflects the more complex subsystems being studied. In order
to assure reasonable spatial distribution of the forces, each subsystem surface was divided
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into four or five zones, with a fair sample being taken from each zone. The forces were
chosen to be normal to the surface of application. The CLFs were evaluated for two
different cases. First, all of the direct and indirect CLFs (h12, h21, h32, h23, h13, h31) together
with the damping factors h1, h2, h3 were evaluated. The values of the recalculated damping
factors again as a check on the accuracy of the SEA equations. In the second case, the
indirect CLFs were not considered in the equations: i.e., only seven unknowns were solved
for, but again using nine equations. A minimal least squares solution method was used
for solving the resulting sets of over-determined equations, allowing study of the effects
of neglecting indirect CLFs in the SEA approach.

The distributions of modes for the three subsystems used in this study, in 10 Hz bands
up to 40 Hz, are shown in Figure 17. It is seen that subsystems 1 and 3 have, on average,
about 25 modes per band, whereas that of subsystem 2 varies significantly with frequency
from about 75 to 50. The modal density ratio between the large and the small subsystems
thus varies from 25/75 to 25/50: i.e., from about 0·3 to 0·5. In this case, MOFs exceeding
unity are obtained by using damping coefficients of 10 s−1 and MOFs less than unity by
using damping coefficients of 1 s−1, for all three subsystems.

In Figure 18 is shown the variation of the direct and indirect CLFs with frequency, when
the MOFs, are made much less than unity. It is clear that the CLFs are not well behaved
and that negative values occur (where there are gaps in the logarithmic plots). In Figure 19
is shown the case in which the MOFs are made greater than unity: it is then possible to
categorize the various CLFs, especially in the frequency ranges beyond 25 Hz; the two
indirect CLFs have least values and lie at the bottom of the plot. They do, however, have
negative values in some frequency ranges. Due to the near symmetry of the subsystems,
it is to be expected that h12 and h32 should be similar, as should h21 and h23, and here this
is only approximately so, which seems to indicate the need for more thorough spatial
averaging. This problem occurs because, in such complex FEA models, many of the

Figure 18. Variation of coupling loss factors with frequency for Example 4, with low modal overlap. Gaps
in the curves indicate negative values, + signs indicate discrete positive values: ———, h12; - - - - -, h21; ..........,
h23; –·–·–·–, h32; –·····–·····–····–, h13; –···–···–, h31.
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Figure 19. Variation of coupling loss factors with frequency for Example 4, with high modal overlap (key as
Figure 18).

extracted mode shapes do not show significant responses throughout the domain being
studied; such ‘localized’ modes are commonly encountered in large FEA analyses. The
extracted values of the damping coefficients (c1,2,3 = h1,2,3v) for both levels of damping
again correctly match the given values, as expected, provided that negative and indirect
CLFs are permitted.

Lastly, the frequency averaged CLFs in various 5 Hz bands are studied for the case in
which c1,2,3 =10 s−1: i.e., at high MOF; see Tables 3 and 4. Here, averaging is carried out
over 20 frequency points and again using 25 forcing points. For each band, results with

T 3

Band averaged results obtained by using all CLFs (direct and indirect)

Band (Hz) c1 c2 c3 h12 h21 h32 h23 h31 h13 h21/h12 h23/h32

20–25 10 10 10 0·0172 0·00389 0·0111 0·00308 0·00121 0·00191 0·23 0·28
25–30 10 10 10 0·0131 0·00328 0·0112 0·00638 0·00171 0·00141 0·25 0·56
30–35 10 10 10 0·0186 0·00769 0·0142 0·00450 0·00105 0·00185 0·41 0·32
35–40 10 10 10 0·0213 0·0147 0·0178 0·00974 −0·00107 0·000347 0·69 0·55

T 4

Band averaged results obtained by using only direct CLFs

Band (Hz) c1 c2 c3 h12 h21 h32 h23 h21/h12 h23/h32

20–25 10·3 9·9 10·2 0·0172 0·00401 0·0111 0·00337 0·23 0·30
25–30 10·3 9·8 10·3 0·0131 0·00407 0·0112 0·00683 0·31 0·61
30–35 10·6 8·2 10·5 0·0186 0·0112 0·0142 0·00961 0·60 0·68
35–40 9·9 10·4 9·8 0·0213 0·0127 0·0178 0·0101 0·60 0·57



.   . . 512

and without indirect CLFs are plotted. The extracted damping coefficients c1, c2 and c3 are
also presented for comparison with the given value of 10 s−1. It should be noted here that
the 5 Hz bands contain more than ten modes in all cases; this was found necessary to gain
reasonable results from applying the SEA equations, even at high modal overlap. This is
in contrast to the often stated need for only five modes per band and is again related to
the presence of localized modes in the FEA solutions.

A study of Tables 3 and 4 shows that inclusion of all the CLFs in the SEA equations
gives correct results, since the damping values are accurately recovered. Notice that the
indirect CLFs are smaller than the direct CLFs, although they are not entirely negligible.
The recovered damping values obtained after neglecting the indirect CLFs show variations
of 1% to 18% from the correct value, depending on the frequency band. This data shows
that the contribution of indirect CLFs to the prediction of energy flows is quite significant
in this case, despite the obvious geometrical split of the structure into three distinct pieces.
In both cases the apparent modal density ratio h21/h12 and h23/h32 are representative of the
actual values (which vary from 0·3 to 0·5 as mentioned previously), although they are not
as similar as would be expected of a nearly symmetric structure. This again indicates the
need for extensive sampling when evaluating spatial averages.

6. CONCLUSIONS

A method for predicting the energy flows between the subsystems of complex structures,
by using receptance theory, has been presented. The subsystems are modelled as
substructures by using a general purpose commercial FEA package, which are then solved
separately for their mode shapes. The formulation is primarily intended for use in
applications related to SEA, where information is required about subsystem energy levels
and input powers and which is somewhat tedious to extract from global FEA models.

The method leads to a form of substructuring using free–free interface conditions which
allows the direct evaluation of energy flows between the substructures. Additionally, and
unlike modal synthesis methods, this approach can readily take into account variations
in substructure damping. It is also possible to obtain exact results by including complete
sets of substructure modes. Since the resulting matrix sizes are independent of the number
of modes used, the problem of modal truncation in large models can easily be avoided.
The examples presented clearly show that the reponse obtained by substructuring using
a receptance formulation are identical to those from equivalent global models (which may
span only a limited frequency domain due to modal truncation arising from limited
computational resources) with appreciable saving in computational effort. It should be
noted, however, that the size of the assembled Green function matrix depends on the
number of coupling points between the substructures; hence it is desirable to define
substructures with the minimum number of interface nodes. None the less, the method
provides an efficient and accurate way of providing data for SEA studies.

This finite element substructure method has then been applied to energy flow studies
for both simple and complex models, using an SEA-like framework. These examples are
used to illustrate some of the advantages of this method over the conventional global
model approach used in FEA: it makes higher frequency ranges accessible for a given
computational effort; spatial averaging of external forcing is handled efficiently and it can
handle different subsystem damping levels with no added complexity. The last two of these
are of particular benefit in SEA work.

The simple plate model which is studied for the effects of varying modal overlap factors
(MOFs) shows that these have a significant effect on the recovered coupling loss factors
(CLFs). For the more complex marine vessel section, the indirect CLFs are found to be
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smaller than the direct CLFs, especially at high MOFs, but even then they are by no means
negligible, despite the obvious breakdown of the structure into three simply connected
subsystems. Variation of the recovered internal damping coefficients as compared to the
specified values is used as an indicator of the accuracy of the SEA solutions. As expected,
the use of both negative and indirect CLFs in the SEA equations is found to yield these
correctly for all frequencies and MOFs. Finally, the results for the larger structure indicate
the spatial and frequency averaging needs to be carried out over many forcing points and
modes to obtain good predictions of SEA parameters, because of the occurrence of many
local modes in large FEA models.
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